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Agenda 

• What makes a gadget? 

– What do gadgets do that make things interesting? 

• Computers for Gadgets 

• Interfacing with the outside world 

• Printing boxes for your gadgets 

• Making your own gadgets 
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Gadgets all around 

• The human race has always been all about tools 

• From the plough, to the wheel, to the Apple iPad, we 
have surrounded ourselves with gadgets 
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What makes a Gadget? 

• The first gadgets were mechanical 

• You can still get mechanical ones now 

• But today most gadgets have an electronic component  

Gadget: Noun - A small mechanical device or tool, esp. an ingenious or novel one. 
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.NET for Multiple Device types 

• You might think of C#, Visual Studio and .NET as tools that 
you use to create PC applications 

– Compile and run your programs and run them on your 
desktop or laptop 

• However, there is more to .NET than this 

– You are probably aware that you can write .NET 
applications for your Windows Mobile device 

• But now you can also target all kinds of devices 

Micro Framework Overview 
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The Missing Operating System 

• A device powered by the .NET Micro Framework does not 
have/need an operating system 

• Programs execute directly on the hardware using a 
"Bootable Run Time System" 

– Simplifies deployment 
– Reduces the demands on the target platform 

• Programs still have access to many parts of the .NET API 

– Provided by the run-time system rather than an 
operating system 
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How it works 

• C# source is compiled to Intermediate Language (MSIL) 

• The MSIL is downloaded in a compressed form and 
interpreted in the Micro Framework device 

• As far as the code is concerned it is running inside a 
standard .NET Assembly 

• The program runs as soon as the device is powered up 
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The .NET Framework Scope 

• Not all .NET devices support all the components of the full 
.NET Framework 

– This is quite sensible given the limitations of the 
platforms and the needs of the solutions 

• However, all the fundamentals of .NET are present on all of 
the platforms 

– And they are used in exactly the same way  
in your applications 

– And there are special purpose libraries  
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Objects and Hardware 

• Input and output connections are managed by objects 

• The output port object provides a method you can use to set 
the state of the pin 

• You can also create ports which generate interrupts when 
they are triggered 

– These make use of delegates to despatch the interrupt 
event 

• There are built in hardware abstractions for RS232, I2C, SPI 
and LCD 
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Reading an Input Pin 

// Map the pin to the software 
Cpu.Pin switchPin = Cpu.Pin.GPIO_Pin2; 
 
// Create a port connected to a pin 
InputPort switchInput = new InputPort( 
  switchPin, //pin 
  false,  //no glitch filter 
   Port.ResistorMode.PullUp); 
 
// Use the pin 
If (switchInput.Read())   
{ 
    Debug.Print("input high");  
} 
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Graphical Displays 

• The .NET Micro Framework has comprehensive graphical 
output facilities for driving device displays 

• The facilities are provided at two levels: 

– Bitmap class provides a range of simple drawing 
facilities (shapes, images, text) 

– Windows Presentation Foundation (WPF) inspired set of 
display elements that can be used to create complex 
displays 
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The Emulator 

• A program that interprets the Micro Framework code  

• Provides very comprehensive debugging support 

• A set of standard component emulations are included: 

– LCD display 
– General Purpose Input/Output 
– Serial port 
– I2C port 
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Extending the Emulator 

• You can also create your own 
component emulations which 
can be integrated into your 
environment 

• All this is done in C# by 
extending the existing emulator 
and component classes in your 
project 

• You can easily build up a library 
of device and component 
emulations which can be shared 
across projects 
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The Hull Emulator 

• I have created a custom 
emulator for use at Hull 

• It provides a set of input and 
output ports that you can use 
to test your programs 

• It also provides a simulated 
serial port connection for 
testing programs that connect 
to other systems 
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Gadgeteer 

• This is a Microsoft 
Gadgeteer device 

• It is powered by the .NET 
Micro Framework but 
provides a much easier way 
to interface devices 

• This side has all the sockets 



26 

Computers for Gadgets 

• This side has the processor 

• You could create an 
embedded device on your 
own PC and then just add 
this processing element 

• This makes the Gadgeteer 
devices great for 
prototyping 
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Plenty of connections 

• We can connect a device to 
each of the sockets 

• Power goes into socket 
number 1 

• Some devices use several 
sockets 

• Each socket has a  
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So, how do we make Gadgets? 

• To make a gadget we have to program the processor (the bit 
in the middle) with the software that will make it do what we 
want 

• We also have to work out which devices fit into which 
sockets 

• We use a tool called Visual Studio to do this 

• It has a Gadget design surface that connects the components 
together 
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Wiring up a camera 

• These are the connections for a simple digital camera 

• It uses an LCD panel, a camera sensor and a button 

• Once we have the sensors connected we can write the code 
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Responding to Events 

• These two program statements “wire” methods up to events 
that the components generate 

– The first one fires a method when a button is pressed 
– The second one fires a method when the camera has a 

picture ready 

 

button.ButtonPressed +=  
    new Button.ButtonEventHandler(button_ButtonPressed); 
 
camera.PictureCaptured +=  
    new Camera.PictureCapturedEventHandler(camera_PictureCaptured); 
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Responding to the button event 

• This is the C# code that runs when the user presses the 
button 

• It just asks the camera to take a picture 

• The camera is represented by a software object that contains 
methods a program can use to ask it to do things 

 

void button_ButtonPressed(Button sender, Button.ButtonState state) 
{ 
    camera.TakePicture(); 
} 
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Responding when the picture is ready 

• This is the C# code that runs when the camera has a picture 
ready 

• The camera will run this method when the picture arrives 

• The method just takes the picture that was received and puts 
it on the screen 

 

void camera_PictureCaptured(Camera sender, GT.Picture picture) 
{ 
    display.SimpleGraphics.DisplayImage(picture,0,0); 
} 
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Is that all there is? 

• This is all the code we need to write to create a digital 
camera 

• We could change the software 

– Make a self timer that waits a few seconds before taking 
the picture 

– Make the camera take a sequence of shots rather than just 
one, then let you pick the best 

– Turn the picture into black and white 
– Combine two pictures so you can be in the same scene 

twice 



“Make a Camera” 
Demo 1: Creating a Camera from Scratch 
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Gadgeteer Devices 

• The camera used a number of devices 

– The camera 
– The button 
– The LCD panel 

• We could add others 

– Add an SD card to save the picture 
– Add a network connection to put the picture on the web 

• There are lots of devices we can use? 
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What do we mean by device? 

• There are lots of devices  
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What do we mean by device? 

• ..and lots 
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• ..and lots 
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What do we mean by device? 

• LCD panel with touch screen input 

– A gadget can display text and graphics 
– Not all gadgets need a display though, many are 

“headless” 
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What do we mean by device? 

• Coloured LED 

– The LED can be programmed change colour and flash 
automatically  
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What do we mean by device? 

• Video Camera 

– A gadget can take pictures of its surroundings 
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What do we mean by device? 

• Network Connection 

– A gadget can connect to a wired network and send and 
receive data 
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What do we mean by device? 

• Push button 

– The user can make things happen by pressing the button 
– This can start a program running inside the gadget 
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What do we mean by device? 

• WiFi connection  

– Gadgets can send and receive information over wireless 
networks 
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What do we mean by device? 

• Memory Card 

– Gadgets can store data in an SD card or read data back 
from it 
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What do we mean by device? 

• Interface expander 

– Gadgets can connect directly to other devices 
– We will use this to connect a printer 
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What do we mean by device? 

• USB Host 

– Gadgets can connect to lots of other peripherals, for 
example mice or keyboards 
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What do we mean by device? 

• Joystick 

– Users can control their gadgets using a joystick 



49 

What do we mean by device? 

• Potentiometer 

– Users can control their gadgets turning a knob 
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What do we mean by device? 

• USB connector 

– Links a Gadget to another computer 
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What do we mean by device? 

• Accelerometer 

– A Gadget can read the acceleration acting on it at any time 
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What do we mean by device? 

• Barometer 

– A Gadget can measure air pressure 
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What do we mean by device? 

• CAN interface 

– A Gadget can connect to industrial machinery 
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What do we mean by device? 

• Bluetooth interface 

– A Gadget can connect to all kinds of Bluetooth devices 
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What do we mean by device? 

• Mobile Phone 

– A Gadget can send and receive data over the mobile phone 
network 
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What do we mean by device? 

• Compass 

– A Gadget can work out which way is north 
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What do we mean by device? 

• Current sensor 

– A Gadget can discover the amount of power a circuit is 
using 
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What do we mean by device? 

• GPS receiver 

– A gadget can tell where it is 



59 

What do we mean by device? 

• Gyroscope 

– A gadget can tell where if it is turning 
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What do we mean by device? 

• Input Expansion  

– A gadget can control lots of other devices 
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What do we mean by device? 

• Remote Control 

– Your gadget can be remote controlled 
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What do we mean by device? 

• Light Matrix Control 

– Your gadget can drive 64 multi-coloured and ultra-bright 
LEDs 
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What do we mean by device? 

• Soil moisture sensor 

– Your gadget can water your plants 
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I could go on… 

• There are also devices which can 

– Measure your heartbeat 
– Detect intruders 
– Measure temperature 
– Sense Light 
– Output video 
– Play Music 

• These all connect via the sockets that you see on the 
processor board 
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Making Gadgets is easy 

• Each of the devices connects to the computer in the same 
way, and we have a “software object” that represents the 
device 

• We write programs that interact with the object 

• There are basically two kinds of program that we make 

– Ones that respond when the user does something (take a 
picture when the user presses a button) 

– Ones that perform a task regularly (read the air pressure 
and then send it to a server on the network)  
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Rob’s Twitter Printer 

• I thought it might be fun to create a program that prints my 
tweets off Twitter 

• I can use a Gadgeteer device to do this, arranged as you see 
above 



“Printing Tweets” 
Demo 2: A Twitter Printer  
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Summary 

• Computer controlled gadgets are easy and fun to 
make 

• There is a huge range of different devices you can 
connect to 

• A program can run in response to a stimulus, or at 
regular intervals 

• You can now use 3D printers to produce the cases 
for your devices 
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Useful Stuff 

• Gadgeteer Hardware and Software 

– http://www.netmf.com/gadgeteer/ 
– http://www.ghielectronics.com/ 

• Free 3D Design Tools 

– http://sourceforge.net/projects/free-cad/ 
– http://www.123dapp.com/ 

• 3D Printers 

– http://www.ultimaker.com/ 

• My Blog 

– http://www.robmiles.com 


