
Making Gadgets

Rob Miles

Department of Computer Science

University of Hull

2

Agenda

• What makes a gadget?

– What do gadgets do that make things interesting?

• Computers for Gadgets

• Interfacing with the outside world

• Printing boxes for your gadgets

• Making your own gadgets

3

Gadgets all around

• The human race has always been all about tools

• From the plough, to the wheel, to the Apple iPad, we
have surrounded ourselves with gadgets

4

What makes a Gadget?

• The first gadgets were mechanical

• You can still get mechanical ones now

• But today most gadgets have an electronic component

Gadget: Noun - A small mechanical device or tool, esp. an ingenious or novel one.

5

.NET for Multiple Device types

• You might think of C#, Visual Studio and .NET as tools that
you use to create PC applications

– Compile and run your programs and run them on your
desktop or laptop

• However, there is more to .NET than this

– You are probably aware that you can write .NET
applications for your Windows Mobile device

• But now you can also target all kinds of devices

Micro Framework Overview

Windows

Tablet PC

Notebook PC

The Windows PC

Windows

Tablet PC

Notebook PC

Point of Sale

Medical Devices

ATMS & Kiosks

Machine Control

Industrial
Automation

Thin Clients

Embedded Windows

Windows

Tablet PC

Notebook PC

Point of Sale

Medical Devices

ATMS & Kiosks

Machine Control

Industrial
Automation

Thin Clients

Windows Mobile

Smartphone
Windows Mobile

Pocket PC Phone

Windows
Automotive

Zune

VoIP Phones

Mobile

Handhelds

Set-top Boxes

Windows Embedded CE

Windows

Tablet PC

Notebook PC

Wearable
Devices

Auxiliary
Displays

Remote Controls

Sensor Networks

Point of Sale

Medical Devices

ATMS & Kiosks

Machine Control

Industrial
Automation

Thin Clients

Windows Mobile

Smartphone
Windows Mobile

Pocket PC Phone

Windows
Automotive

Zune

VoIP Phones

Mobile

Handhelds

Set-top Boxes

.NET Micro Framework

10

Platforms and Hardware

Windows Vista Windows XP
Embedded

Windows CE .NET Micro
Framework

Device
Features

Connected,
PC Class
Performance,
Accelerated
Graphics

Connected,
PC Class
Performance

Connected,
Graphical UI,
Server, Browser,
RAS DirectX

Connected,
Small, Wearable,
Graphical UI

Development Visual Studio + C#
.NET Framework

Visual Studio + C#
.NET Framework

Visual Studio + C#
.NET Compact
Framework

Visual Studio + C#
.NET Micro
Framework

Footprint X86 Dual Core, 64
Bit,
Multi Processor

X86 X86, MIPS, SH4,
ARM, with MMU,
12 MB,
Managed Code

ARM 7, ARM 9,
No MMU,
250-500KB,
Managed Code

Power

Mains Mains Low Power Very Low Power

11

Platforms and Hardware

Windows Vista Windows XP
Embedded

Windows CE .NET Micro
Framework

Device
Features

Connected,
PC Class
Performance,
Accelerated
Graphics

Connected,
PC Class
Performance

Connected,
Graphical UI,
Server, Browser,
RAS DirectX

Connected,
Small, Wearable,
Graphical UI

Development Visual Studio + C#
.NET Framework

Visual Studio + C#
.NET Framework

Visual Studio + C#
.NET Compact
Framework

Visual Studio + C#
.NET Micro
Framework

Footprint X86 Dual Core, 64
Bit,
Multi Processor

X86 X86, MIPS, SH4,
ARM, with MMU,
12 MB,
Managed Code

ARM 7, ARM 9,
No MMU,
250-500KB,
Managed Code

Power

Mains Mains Low Power Very Low Power

12

Platforms and Hardware

Windows Vista Windows XP
Embedded

Windows CE .NET Micro
Framework

Device
Features

Connected,
PC Class
Performance,
Accelerated
Graphics

Connected,
PC Class
Performance

Connected,
Graphical UI,
Server, Browser,
RAS DirectX

Connected,
Small, Wearable,
Graphical UI

Development Visual Studio + C#
.NET Framework

Visual Studio + C#
.NET Framework

Visual Studio + C#
.NET Compact
Framework

Visual Studio + C#
.NET Micro
Framework

Footprint X86 Dual Core, 64
Bit,
Multi Processor

X86 X86, MIPS, SH4,
ARM, with MMU,
12 MB,
Managed Code

ARM 7, ARM 9,
No MMU,
250-500KB,
Managed Code

Power

Mains Mains Low Power Very Low Power

.NET Framework on Windows

 Services

•Description

•Discovery

•Protocols

UI Controls

•HTML

•Web

Runtime

•Interop

•Remoting

•Serialization

Design

Configuration

Cache

Session state

Security

Imaging

Drawing 2D

Text

Printing

Design

ADO.NET

SQL ServerCE

SQL Client

Xslt/XPath

XML Document

Reader/writers

Serialization

Service process

Configuration

Threading

Diagnostics

Net

IO

Resources

Reflection

Security

Collections

Globalization

Text

Component
model

System.Drawing

System.Windows.Forms System.Web

System.Data System.XML

System

.NET Compact Framework

 Services

•Description

•Discovery

•Protocols

UI Controls

•HTML

•Web

Runtime

•Interop

•Remoting

•Serialization

Design

Configuration

Cache

Session state

Security

Imaging

Drawing 2D

Text

Printing

Design

ADO.NET

SQL ServerCE

SQL Client

Xslt/XPath

XML Document

Reader/writers

Serialization

Service process

Configuration

Threading

Diagnostics

Net

IO

Resources

Reflection

Security

Collections

Globalization

Text

Component
model

System.Drawing

System.Windows.Forms System.Web

System.Data System.XML

System

.NET Micro Framework

 Services

•Description

•Discovery

•Protocols

UI Controls

•HTML

•Web

Design

Configuration

Cache

Session state

Security

Imaging

Drawing 2D

Text

Printing

Design

ADO.NET

SQL ServerCE

SQL Client

Xslt/XPath

XML Document

Reader/writers

Serialization

Service process

Configuration

Threading

Diagnostics

Net

IO

Resources

Reflection

Security

Collections

Globalization

Text

Component
model

System.Drawing

System.Windows.Forms System.Web

System.Data System.XML

System

Interop

Runtime

Serialization

Remoting

16

The Missing Operating System

• A device powered by the .NET Micro Framework does not
have/need an operating system

• Programs execute directly on the hardware using a
"Bootable Run Time System"

– Simplifies deployment
– Reduces the demands on the target platform

• Programs still have access to many parts of the .NET API

– Provided by the run-time system rather than an
operating system

17

How it works

• C# source is compiled to Intermediate Language (MSIL)

• The MSIL is downloaded in a compressed form and
interpreted in the Micro Framework device

• As far as the code is concerned it is running inside a
standard .NET Assembly

• The program runs as soon as the device is powered up

18

The .NET Framework Scope

• Not all .NET devices support all the components of the full
.NET Framework

– This is quite sensible given the limitations of the
platforms and the needs of the solutions

• However, all the fundamentals of .NET are present on all of
the platforms

– And they are used in exactly the same way
in your applications

– And there are special purpose libraries

19

Objects and Hardware

• Input and output connections are managed by objects

• The output port object provides a method you can use to set
the state of the pin

• You can also create ports which generate interrupts when
they are triggered

– These make use of delegates to despatch the interrupt
event

• There are built in hardware abstractions for RS232, I2C, SPI
and LCD

20

Reading an Input Pin

// Map the pin to the software
Cpu.Pin switchPin = Cpu.Pin.GPIO_Pin2;

// Create a port connected to a pin
InputPort switchInput = new InputPort(
 switchPin, //pin
 false, //no glitch filter
 Port.ResistorMode.PullUp);

// Use the pin
If (switchInput.Read())
{
 Debug.Print("input high");
}

21

Graphical Displays

• The .NET Micro Framework has comprehensive graphical
output facilities for driving device displays

• The facilities are provided at two levels:

– Bitmap class provides a range of simple drawing
facilities (shapes, images, text)

– Windows Presentation Foundation (WPF) inspired set of
display elements that can be used to create complex
displays

22

The Emulator

• A program that interprets the Micro Framework code

• Provides very comprehensive debugging support

• A set of standard component emulations are included:

– LCD display
– General Purpose Input/Output
– Serial port
– I2C port

23

Extending the Emulator

• You can also create your own
component emulations which
can be integrated into your
environment

• All this is done in C# by
extending the existing emulator
and component classes in your
project

• You can easily build up a library
of device and component
emulations which can be shared
across projects

24

The Hull Emulator

• I have created a custom
emulator for use at Hull

• It provides a set of input and
output ports that you can use
to test your programs

• It also provides a simulated
serial port connection for
testing programs that connect
to other systems

25

Gadgeteer

• This is a Microsoft
Gadgeteer device

• It is powered by the .NET
Micro Framework but
provides a much easier way
to interface devices

• This side has all the sockets

26

Computers for Gadgets

• This side has the processor

• You could create an
embedded device on your
own PC and then just add
this processing element

• This makes the Gadgeteer
devices great for
prototyping

27

Plenty of connections

• We can connect a device to
each of the sockets

• Power goes into socket
number 1

• Some devices use several
sockets

• Each socket has a

28

So, how do we make Gadgets?

• To make a gadget we have to program the processor (the bit
in the middle) with the software that will make it do what we
want

• We also have to work out which devices fit into which
sockets

• We use a tool called Visual Studio to do this

• It has a Gadget design surface that connects the components
together

29

Wiring up a camera

• These are the connections for a simple digital camera

• It uses an LCD panel, a camera sensor and a button

• Once we have the sensors connected we can write the code

30

Responding to Events

• These two program statements “wire” methods up to events
that the components generate

– The first one fires a method when a button is pressed
– The second one fires a method when the camera has a

picture ready

button.ButtonPressed +=
 new Button.ButtonEventHandler(button_ButtonPressed);

camera.PictureCaptured +=
 new Camera.PictureCapturedEventHandler(camera_PictureCaptured);

31

Responding to the button event

• This is the C# code that runs when the user presses the
button

• It just asks the camera to take a picture

• The camera is represented by a software object that contains
methods a program can use to ask it to do things

void button_ButtonPressed(Button sender, Button.ButtonState state)
{
 camera.TakePicture();
}

32

Responding when the picture is ready

• This is the C# code that runs when the camera has a picture
ready

• The camera will run this method when the picture arrives

• The method just takes the picture that was received and puts
it on the screen

void camera_PictureCaptured(Camera sender, GT.Picture picture)
{
 display.SimpleGraphics.DisplayImage(picture,0,0);
}

33

Is that all there is?

• This is all the code we need to write to create a digital
camera

• We could change the software

– Make a self timer that waits a few seconds before taking
the picture

– Make the camera take a sequence of shots rather than just
one, then let you pick the best

– Turn the picture into black and white
– Combine two pictures so you can be in the same scene

twice

“Make a Camera”
Demo 1: Creating a Camera from Scratch

35

Gadgeteer Devices

• The camera used a number of devices

– The camera
– The button
– The LCD panel

• We could add others

– Add an SD card to save the picture
– Add a network connection to put the picture on the web

• There are lots of devices we can use?

36

What do we mean by device?

• There are lots of devices

37

What do we mean by device?

• ..and lots

38

• ..and lots

39

What do we mean by device?

• LCD panel with touch screen input

– A gadget can display text and graphics
– Not all gadgets need a display though, many are

“headless”

40

What do we mean by device?

• Coloured LED

– The LED can be programmed change colour and flash
automatically

41

What do we mean by device?

• Video Camera

– A gadget can take pictures of its surroundings

42

What do we mean by device?

• Network Connection

– A gadget can connect to a wired network and send and
receive data

43

What do we mean by device?

• Push button

– The user can make things happen by pressing the button
– This can start a program running inside the gadget

44

What do we mean by device?

• WiFi connection

– Gadgets can send and receive information over wireless
networks

45

What do we mean by device?

• Memory Card

– Gadgets can store data in an SD card or read data back
from it

46

What do we mean by device?

• Interface expander

– Gadgets can connect directly to other devices
– We will use this to connect a printer

47

What do we mean by device?

• USB Host

– Gadgets can connect to lots of other peripherals, for
example mice or keyboards

48

What do we mean by device?

• Joystick

– Users can control their gadgets using a joystick

49

What do we mean by device?

• Potentiometer

– Users can control their gadgets turning a knob

50

What do we mean by device?

• USB connector

– Links a Gadget to another computer

51

What do we mean by device?

• Accelerometer

– A Gadget can read the acceleration acting on it at any time

52

What do we mean by device?

• Barometer

– A Gadget can measure air pressure

53

What do we mean by device?

• CAN interface

– A Gadget can connect to industrial machinery

54

What do we mean by device?

• Bluetooth interface

– A Gadget can connect to all kinds of Bluetooth devices

55

What do we mean by device?

• Mobile Phone

– A Gadget can send and receive data over the mobile phone
network

56

What do we mean by device?

• Compass

– A Gadget can work out which way is north

57

What do we mean by device?

• Current sensor

– A Gadget can discover the amount of power a circuit is
using

58

What do we mean by device?

• GPS receiver

– A gadget can tell where it is

59

What do we mean by device?

• Gyroscope

– A gadget can tell where if it is turning

60

What do we mean by device?

• Input Expansion

– A gadget can control lots of other devices

61

What do we mean by device?

• Remote Control

– Your gadget can be remote controlled

62

What do we mean by device?

• Light Matrix Control

– Your gadget can drive 64 multi-coloured and ultra-bright
LEDs

63

What do we mean by device?

• Soil moisture sensor

– Your gadget can water your plants

64

I could go on…

• There are also devices which can

– Measure your heartbeat
– Detect intruders
– Measure temperature
– Sense Light
– Output video
– Play Music

• These all connect via the sockets that you see on the
processor board

65

Making Gadgets is easy

• Each of the devices connects to the computer in the same
way, and we have a “software object” that represents the
device

• We write programs that interact with the object

• There are basically two kinds of program that we make

– Ones that respond when the user does something (take a
picture when the user presses a button)

– Ones that perform a task regularly (read the air pressure
and then send it to a server on the network)

66

Rob’s Twitter Printer

• I thought it might be fun to create a program that prints my
tweets off Twitter

• I can use a Gadgeteer device to do this, arranged as you see
above

“Printing Tweets”
Demo 2: A Twitter Printer

68

Summary

• Computer controlled gadgets are easy and fun to
make

• There is a huge range of different devices you can
connect to

• A program can run in response to a stimulus, or at
regular intervals

• You can now use 3D printers to produce the cases
for your devices

69

Useful Stuff

• Gadgeteer Hardware and Software

– http://www.netmf.com/gadgeteer/
– http://www.ghielectronics.com/

• Free 3D Design Tools

– http://sourceforge.net/projects/free-cad/
– http://www.123dapp.com/

• 3D Printers

– http://www.ultimaker.com/

• My Blog

– http://www.robmiles.com

