Teaching C#

Delivered as part of “Teaching and Learning with Microsoft C# and Rotor"

Friday 6th January 2006
Rob Miles

Contents
2Contents

3Introduction

3Java and C#

4C# History

4Development Tools

4C# Language Features

41.
User Input and Output

4Teaching Context: User Input and Output

5Practical Ideas 1: Simple Console Demo

5Practical Ideas 2: Moving Spot

52.
Value Types

5Teaching Context: Value Types and Primitives

6Structures as values

6Practical Ideas 1: Value Types

6Teaching Context: Structures

6Practical Ideas 2: Simple Structure

7Practical Ideas 3: Structure with Equals Operator

7Practical Ideas 4: Arrays of Structures

73.
Exception Handling

7Teaching Context: Exception Handling

8Practical Ideas 1: Throwing Exceptions

8Practical Ideas 2: Try – catch Construction

8Practical Ideas 3: Exception Data

8Practical Ideas 4: Custom Exceptions

84.
Reference Parameters

9Teaching Context: Reference Parameters

9Practical Ideas 1: Reference Parameters

9Practical Ideas 2: Out Parameters

95.
Event Handling and Delegates

10Teaching Context: Event Handling

10Practical Ideas 1: Event Handling in Forms

10Practical Ideas 2: Event Handling using the GUI designer

10Teaching Context: Delegates as Objects

10Practical Ideas 3: Using Delegates to manage behaviours

106.
Program Linking and Deployment

11Teaching Context: Constructing an application

12Practical Ideas 1: Simple business objects with test harness

12Practical Ideas 2: Business objects with control classes

127.
Properties

13Teaching Context: The value of properties

13Practical Ideas 1: Simple business objects with test harness

148.
Generics

14Teaching Context: Generics in the system libraries

15Practical Ideas 1: Generic List

15Teaching Context: Working with Generics

15Practical Ideas 2: Linked List

15In Conclusion

Introduction

This is (or at least should be read) in the context of a fairly personal document, in that it expresses the results of my teaching experience, and is coloured by my opinions about the way that teaching of programming should be performed. However, I hope that it will prove to be a useful and stimulating read.

At the University of Hull, Department of Computer Science I began teaching programming using C# as our first language in September 2004. We are now in our second year of using the language. The results have been positive, with an overall improvement in grades having been noted.

I have found that the language fits well with our approach to teaching, which takes an “algorithms first” approach. Whilst objects are a very powerful tool I am of the opinion that an objects first teaching approach to programming is not necessarily the best way to do it. Students are very quick to grasp object concepts and soon become adept at designing classes with them. However, once they have completed their designs they are unable to create the required behaviour that goes inside the objects themselves.

It is my opinion that objects should be introduced as a solution to problems of structure and design, as well as resource deployment and testing. They fit very nicely into the second semester of a first year programming course, once all the issues with algorithms have been addressed. From objects as a method of encapsulation it is then possible to move on to component based design using interfaces, with class hierarchies being introduced as a mechanism for code reuse.

However, this is not a discussion of the best way to teach programming, more I am attempting to put the C# language into a teaching context, and bring out the language features which I have found to be especially significant. For each of the features of C# that I describe in this document I’m going to add a “teaching context” item, which shows how I see this feature affecting the teaching process. For each item there are also a number of practical demonstrations of the feature in use.
Java and C#
Java is a very popular teaching language and many academics have considerable experience with it. It was the language in use at Hull University until the introduction of C#. The comments in this document are based on a comparison of C# with Java at version 1.4.
C# has a great deal in common with Java. Conversion from C# to Java (or vice versa) is not difficult. Many of the program constructions are identical. C# supports objects, abstract classes and interfaces. Both C# and Java are compiled down to an intermediate language which is “Just In Time” compiled when the program executes. One of the more surprising experiences with C# is that programs do seem to run more quickly their Java equivalents. This is probably because the C# libraries are more tightly integrated to Windows than with in Java.
C# History

C# was developed by Microsoft and is being positioned as one of the primary development languages for use within the .NET Framework also produced by this company. However, the language is not proprietary. C# and components of the .NET framework have been made the subject of a number of ECMA (European Computer Manufacturer Association) standards
 and there are a number of open and shared source initiatives which provide implementations including the Shared Source Common Language Infrastructure (SSCLI)
 and the Mono Project
. Microsoft is however still the prime mover of the C# language, in the same way that Sun Microsystems still exerts considerable influence over the Java language.
The C# language has just reached version two. The second version, introduced with the launch of Visual Studio 2005, brings a number of important enhancements, including generics and also partial classes. However, there are very few “breaking changes” in that nearly all version one programs will run successfully using the new compilers.

Development Tools

Students can obtain a command line development environment simply by downloading it from Microsoft. At Hull I use this in the first semester of the course, to give the students an appreciation of the role of a compiler in the development process. Institutions which are members of the Microsoft Academic Alliance can deploy the Visual Studio 2005 development environment and also distribute copies to students. A free (at the moment) version of the tool, Visual Studio 2005 Express Edition, is also available for download from Microsoft.

C# Language Features

When comparing C# with Java, there are a number of features of the language which have been added as compared to the Java language. The ones which I have particularly identified as significant from a teaching perspective are:
1. User Input and Output

The mechanism for reading input from the user in a Java program is a complex one involving an understanding of streams, objects and exceptions. Some Java programming texts
 have even resorted to the provision of additional software to address this issue (which I consider extremely dangerous as students then think that this additional code is part of the language).

In C# user input is provided much more simply. The System.Console class provides a range of methods for input and output (and in Version 2.0 a whole lot more besides – including managing the colour of text and background and clearing the screen).

Teaching Context: User Input and Output

It is hard to overstate the value of this change when teaching programming. In C# a string can be read in as follows:

string inputString = Console.ReadLine();

The only slight complication is the need to explain to the students what “Console.” means in this code, but this can be placed in the context of “asking the Console to do something for us” which leads nicely into behaviours and methods later in the course. It also has a nice follow on for the print mechanism:

Console.WriteLine ("Hello World");

This can be explained as asking the Console to do something else for us.

Practical Ideas 1: Simple Console Demo

This Visual Studio Project simply shows the use of the Console object to read and print strings. It also shows the use of more advanced features of the Console class.
You can investigate the effect of changing the print parameters and using Visual Studio interactive help to find out what other methods and properties the Console object supports:
code\01 Console Object\01 ConsoleDemo

Practical Ideas 2: Moving Spot

This Visual Studio Project shows some of the key scanning and delay features of C#. It provides a spot which moves around the screen. The direction of movement can be controlled by the cursor keys. This code could be used as the basis of a Snake or Breakout game.

You can investigate the use of the threading delay to speed up/slow down the movement of the spot, as well as the cursor movement methods:
code\01 Console Object\02 Moving Spot
2. Value Types

In Java information is represented as either a primitive type (for example an int) or a reference to an object instance (for example a Date). Any object more complex than a primitive value must be managed by a reference to an instance.

This makes the behaviour of assignment and equality tests different between these two, leading to considerable confusion when teaching. It also leads to a need for wrapper classes when primitive variables are required to perform some characteristic operation.

In C# everything is an object, and can therefore support methods and properties. However, some of the types are managed as “value” types which give them the behaviour of Java primitives.
Value type variables can be manipulated by the run time system as primitives. There is an automatic (and transparent to the programmer) conversion to objects being performed when required. The C# programmer is unaware of this distinction.
Teaching Context: Value Types and Primitives
In Java students are required to use the wrapper classes to perform things like number parsing. This leads to an increase in complexity and to questions like “Why do I have to use the Integer class?” which cannot really be answered satisfactorily to a beginning programmer.

When I do mention this issue I talk in terms of two “kinds” of object – value types and all the rest. I also explain that the reason we have them is to improve the performance of the program, in that value types can be manipulated directly by the processor, whereas other kinds of objects, which are managed in terms of references, must be located before they can be used, leading to slower programs.

Later on in our course I turn this on its head, and say that references make programs easier because if the thing we are working with is large it is easier to move a reference to it than move the thing itself – which is the context in which references are useful. This is also the point at which the role of references in structures such as linked lists can be introduced.
Structures as values

C# includes a struct type which is also manipulated by value. This means it is possible to greatly increase the complexity of algorithmic exercises without needing to make use of objects. C# variables of type struct can contain data members (and even methods and constructors) but are managed as values, in that assignment tests behave as for Java primitives.

Note that if you want to compare structures for equality you have to create your own == and != operators to perform the value wise comparison and Equals method. I am not suggesting that this be done at the start of a programming course.
Practical Ideas 1: Value Types
This project contains a very simple program which shows the difference in behaviour between value and reference types.

You can use ILDASM to look at the assembler that this project produces. You can also see how the Visual Studio 2005 interactive help automatically generates the code based on the context of the source that it is given:

code\02 Value Types and Structures\01 Value and Reference Types
Teaching Context: Structures
I use structures in the first semester of our teaching course, where students are encouraged to place related items into a structure to ease the management of the data.

The context we use is that of a cricket score calculator, where the name of the batsman, the score achieved and the length of the innings are placed in a single structure. Students can then perform searching and sorting on an array of these items without needing to discuss objects in any great detail (except in the context of an array which is still a “pure” object and must be manipulated by reference – but the idea of manufacturing an array of a particular size by using new is quite well received).

Practical Ideas 2: Simple Structure
This project contains a simple structure which contains details from a cricket innings.

You can use it to investigate the behaviour of the assignment operator. Change the Player structure into a class to see how things change:
code\02 Value Types and Structures\02 CricketScores Struct
Practical Ideas 3: Structure with Equals Operator
This project expands on the original to add behaviour for the equals operator which allows two cricket values to be compared for equality.

You can use it to see how operators and methods are added to structures:

code\02 Value Types and Structures\03 CricketScores Struct with Equals
Practical Ideas 4: Arrays of Structures
This project uses the cricket structure to store information about a game in a team array. The array is then sorted using a simple bubble sort. It also shows how the #region directive can be used to fold code.
You can use it to see how arrays are created and dimensioned, and also see the behaviour of value types as array elements:

code\02 Value Types and Structures\04 CricketScores Array
3. Exception Handling

In Java, if a method call may generate a “checked” exception the code which uses that method must either pass that exception on (i.e. be declared as throwing the exception) or encapsulate the call in a try – catch construction. Many of the Java library methods generate checked exceptions, including those which perform input/output, forcing programmers to handle them.

The C# language does not have the concept of a “checked” exception. Whether or not to catch exceptions is entirely at the discretion of the programmer. Any exceptions which are thrown are therefore picked up by the run-time environment if no explicit handler is provided. This allows the teacher to introduce exception handling much later in the course, as there is no need to deal with it earlier.

This does however, lead to one significant issue with C#. When writing Java a programmer is always aware of all the exceptions that a method call can generate; for the simple reason that they have to put the code in to deal with all of them. In C# this is not the case. It is theoretically possible for any method call to generate any exception, and the documentation which has been provided for the system libraries in Visual Studio 2003 is not always definitive on this matter. However, Visual Studio 2005 help does provide this information.

Teaching Context: Exception Handling
The most obvious advantage of this exception behaviour is that students do not need to consider exceptions at all when they write their first programs. Their programs will still fail when something bad happens, but they can be educated to expect this and do something about it, rather than having to explain the need for the technology before they have noticed one.

Practical Ideas 1: Throwing Exceptions
This project contains a simple number parsing application which can be made to throw an exception when the parse process breaks.

If you enter text which cannot be parsed into a number it will throw an exception and the program will stop. You can use this to investigate the default exception behaviour, both in Visual Studio 2005 and from the command line:

code\03 Exceptions\01 Int Parse Exception
Practical Ideas 2: Try – catch Construction
This project contains a try – catch construction which catches the exception internally. Note that there is a form of this construction where the actual exception is ignored.
You can use this to investigate the behaviour of the catch when invalid items are entered:

code\03 Exceptions\02 Exception Catch
Practical Ideas 3: Exception Data
This project contains a try – catch construction which catches the exception and then uses information within it to produce diagnostic output.

You can use this to investigate the properties available in an instance of an exception:

code\03 Exceptions\03 Exception Details
Practical Ideas 4: Custom Exceptions
This project creates a custom exception type which is then thrown by a method in a class.

You can add extra information to the exception as thrown, but if you do this you will need to change the exception constructor:

code\03 Exceptions\04 Own Exceptions
4. Reference Parameters

In Java all parameters are passed into methods as values. If a method needs to deliver multiple results these must be returned via an object of some kind, either by changing the values in an instance referred to by a parameter, or by returning a reference to an instance which contains multiple result values. This can lead to the creation of additional classes, just to allow methods to return multiple results.

In C# a parameter to a method can be declared as a reference to a type. This is directly analogous to the pointer mechanism in C++, although the syntax is clearer. Within the method the reference parameters do not need to be explicitly de-referenced when they are used. This can make programming easier, removing the need for additional classes to be created simply for result delivery.

Teaching Context: Reference Parameters
From a teaching point of view the use of reference parameters can lead to useful discussion in two areas.

Firstly it provides a useful way of initiating the discussion of references themselves. Students can see that for a method to be able to change something it must be provided with a reference to where that thing is, and not just given the value of it. The words value and reference can now be placed directly into solid contexts, prior to any consideration of objects themselves.

Secondly the fact that C# provides an “out” form of reference parameter, where the method is only ever allowed to place results into a reference (and indeed must do this before the method will compile) allows me to begin discussion on the role of the compiler in ensuring code is “correct”.

By this point in the programming course students are becoming slightly more sophisticated as programmers and I can begin to discuss ways in which a programmer can use language features to guard against mistakes that they might make (in this case forgetting to deliver a result, or using something as an input when it is not meant to be so).

Practical Ideas 1: Reference Parameters
This project contains a program using a method which has reference parameters. Note that they must be marked as reference in the declaration of the method and the call, but with in the method itself they are just used as other variables:
code\04 Reference Parameters\01 Simple Reference Parameters
Practical Ideas 2: Out Parameters
This project contains a program using a method which has output parameters.
You can use this code to investigate the effect of either reading from an “out” parameter or not setting a value to an out parameter,

04 Reference Parameters\02 Out Parameters
5. Event Handling and Delegates
The handing of events in Java is especially cumbersome. The programmer must create an instance of a class which contains the methods to be invoked when the events occur. This instance can then be passed to the object producing the events. Although anonymous inner classes which extend utility classes are available, these add to the complication – particularly for novice programmers.

C# introduces a mechanism which allows the programmer to create an object which represents a reference to a method in a particular instance of a class. Such objects are called delegates. A reference to a delegate can be passed to an event generator, which can then invoke the delegate when the event occurs.
Teaching Context: Event Handling
The first time that students encounter delegates is usually in the context of forms events. I have found it useful to create the first program that makes use of forms entirely outside a CASE tool, during a lecture. The provision of delegates makes this much easier; students can see how the program fits together. The idea of an object which represents an endpoint for messages (i.e. a place where they can be delivered) is also very useful.

Practical Ideas 1: Event Handling in Forms
This project contains a program which creates a form with a button on it. The button click event is then bound to two methods which are called each time the button is pressed. The form and the button are created programmatically.

You can investigate how methods are added to and removed from a delegate (you can use -= to remove an event from a delegate):

code\05 Event Handling\01 Forms Events
Practical Ideas 2: Event Handling using the GUI designer
This project contains a program which creates a form with a button on it. When the button is clicked a message is printed. This version of the code was created using the forms designer which is part of Visual Studio 2005.

You can use this to see how partial classes are used in Visual Studio 2005 to isolate the window design code from the behaviour code:
code\05 Event Handling\02 Forms IDE
Teaching Context: Delegates as Objects
The idea that a method call can be manipulated in terms of an object which represents it is also very useful from the point of view of references to methods. Things like threaded code, where a list of method calls is assembled to implement a particular behaviour, can be very easily be constructed and explained.

Practical Ideas 3: Using Delegates to manage behaviours
This project uses delegates to manage a data verification process. A single delegate is used to mange a number of different invocations. There are two methods which can verify an input string. One will fail if the string is empty, the other will fail if the string does not contain a valid integer. These can be bound to a single delegate so that the behaviour of the delegate can be varied depending on the needs of the application:
code\05 Event Handling\03 Delegates in Design

6. Program Linking and Deployment

In Java the concept of linking does not really exist as part of the build process. Any class can contain a main method and has the potential for behaving like an application. If one class makes use of another, this will be located and loaded as the application runs. If a class that is required is not found at run time the program will fail.

To deploy a Java application a programmer must make sure that all the classes are distributed, in the appropriate package directory structure, and that the classpath environment variable on the host system is configured to allow these classes to be located. This complication, allied with the fact that programs are not executed directly, but by running the java run time system to act on them, can make distributing Java programs tricky.

In contrast, a C# project will generate a single executable file and a number of library files to support it. As long as the library files are shipped with the executable the program will run. Version information is placed in the manifests of the library files and the executable is keyed to this.
The C# run time system is integrated into the operating system, so that the user just has to enter the program name to run it.
In C# there is no direct mapping between the name of a file and the class it contains. A single source file can contain a number of classes. Indeed, in version 2 of the language a single class can be spread over a number of source files by use of the “partial” mechanism.

Unlike Java, where the directory in which an executable is placed has a direct bearing on the way that the application is partitioned, C# makes use of a namespace mechanism by which applications are broken down into components. Classes are placed in namespaces which are hierarchical in nature. A single source file can contain classes to be placed in a number of namespaces. During the build process the complete namespace is constructed and the resources located from the appropriate libraries. The Visual Studio environment also provides a class view which allows the programmer to find the source of a given item.

Teaching Context: Constructing an application
The bad news with C# is that students must pay more attention to the components in their programs when they construct them. A Java program can find and load classes as it runs; so as long as they are present and correct at run time. Building a C# application out of a number of components requires slightly more planning. From the command line perspective the compiler must be instructed to generate the library files for the business objects and then when the application is built these libraries must be identified as part of the final deliverable. If students are to use Visual Studio they will have to explicitly connect the library files to each other and then make use of the using keyword to bring in the namespaces if they do not want to use fully qualified names.
My experience so far has been that this is not a problem as such. The idea of a business object is something which is introduced very early in our course, specifically in the context of test driven development. It then seems very natural to have to manage the inclusion of the business object behaviour into an application. In the first year I performed this work using the command line compiler, which also introduces the students to the use of options and parameters to control the behaviour of a tool, which they find useful.

Another item worthy of mention in this context is the ILDASM (Intermediate Language Disassembler) tool. This provides a very good way of viewing the content of an executable program or library. All the components in the file can be investigated, including their properties and even the intermediate language statements themselves. By the second semester students have done enough work in the hardware parts of the course to know that programs are actually executed at a much lower level than they are written, and ILDASM provides a very good way of starting to look at this, even going as far as to discuss the role of intermediate code and just in time compilation. It is provided as part of the Visual Studio 2005 installation.
Practical Ideas 1: Simple business objects with test harness
This is a Visual Studio 2005 workspace to implement some portions of a lending library. It contains a business object project, empty GUI project and test harness project. You can use it to see how a workspace contains a number of different project items and how they are linked together by means of the resources allocated to each project:

code\06 Linking and Deployment\01 Multi File Project
The workspace is in the Library directory. The other directories contain the other projects in the workspace.

Practical Ideas 2: Business objects with control classes
This is a Visual Studio 2005 workspace to implement some portions of a computer games lending club. The workspace contains a business object project, control class and a GUI for one use case along with an appropriate test harness. This is not part of the first year teaching, but is used as an example of how I think behaviours are best partitioned to implement a sample application in the second year of a programming course:

code\06 Linking and Deployment\02 Business Objects and Control Classes
The workspace is in the GameClubSystem directory.
7. Properties

Properties have been best described as a bit of “syntactic sugar” in that they do not actually add functionality as such. Instead they just allow behaviours to be represented in a slightly simpler manner. They allow “get” and “set” behaviours to be made to resemble access to the property.

They are used frequently within the library classes and so they need to be covered in a C# course, although they need not be used.

public class Title
{

private string name ;
public string Name

{

get

{

return name;

}

set

{

name = value;

}

}
}
In the code above the name member of the Title class is being exposed as a property. Note that the case of variable names is significant, and that there is a convention in C# that the name of private members in a class and parameters to methods all have identifiers which start with a lower case letter. Public members have identifiers which start with an upper case letter.
Once a member has been exposed as a property it can be accessed “directly”:

Title book = new Title();

book.Name = “War and Peace”;

Console.WriteLine (book.Name);

You can implement read only properties by only providing a get behaviour. Properties can be made abstract and also incorporated in interfaces.

Teaching Context: The value of properties
I teach properties in the context of “making life easier”. A point that I frequently make during the course at Hull is that all you really need are variables, conditions, loops and arrays. Everything else, including methods, classes, switch constructions, exceptions, etc etc, have been created because we have found over the years that these things make programming easier. Properties are an extension of this.

They can be confusing at the start; because there is no way you can tell at the point of use in the source whether or not a given line of code simply reads a value or executes thousands of lines of code. However, the browse tool in Visual Studio makes a visual distinction.
Practical Ideas 1: Simple business objects with test harness
This is a program which contains a class which exposes its member value as a property:
code\07 Properties\01 Simple Properties
8. Generics

Version 2.0 of C# supports generics. These are an extremely powerful language feature which let you use placeholders for actual types when creating classes. They are fully integrated into the underlying .NET framework and type safety is maintained at all times.
Teaching Context: Generics in the system libraries
I don't think that generics are the kind of thing you really want to teach a first year programming course in great detail (if at all). However, they do make possible collection classes which do not require casting when an item is fetched from them.
static void Main(string[] args)

{

 System.Collections.Generic.List<int> intList =

 new System.Collections.Generic.List<int>();

 System.Random rand = new Random();

 for (int i = 0; i < 100; i++)

 {

 intList.Add(rand.Next());

 }

 intList.Sort();

 for (int i = 0; i < intList.Count; i++)

 {

 int number = intList[i];

 Console.WriteLine(number);

 }

}

The above code creates an integer list, puts 100 random numbers in it, sorts them and then prints them out. Note that when the list is printed out there is no need to cast the value in the list to an int when it is transferred into the variable number. This is because intList is created specifically as a list which contains integers.
Note also that the sort behaviour works correctly because the correct comparison behaviour is mapped onto the type as supplied to the List. I have not used this with students yet and I'm not completely convinced that it is sensible.
Practical Ideas 1: Generic List
This is a program which implements the list behaviour as above using the List collection class which supersedes the ArrayList class in Version 1.0:

code\08 Generics\01 ArrayListDemo
Teaching Context: Working with Generics
When talking about data structures such as lists it is probably useful to be able to abstract away the thing that the structure actually holds.

I don't think that generics are the kind of thing you really want to teach a first year programming course in great detail (if at all). However, they do make possible collection classes which do not require casting when an item is fetched from them.

Practical Ideas 2: Linked List
This is a program which creates a generic linked list. Items can be added to and deleted from the list. The program creates two instances of a list, one which holds integers and the other which holds strings.

code\08 Generics\02 GenericDemo

In Conclusion

There are a number of other items about C# which are worthy of note but the items above are the ones that I have found the most relevant when considering a first year class. Version 2.0 of the language brings generics (although I’m unsure of their value in an introductory course) and partial classes (which are very effective for hiding nasty bits of code that you don’t want visible and may also be valuable for team working). However, I have yet to introduce these in any form yet.

It is fair to state that the introduction of C# has resulted in improved performance by the students both in the practical and the examined portions of the first year course. This experience is based on two cohorts, one complete and the other having just finished the first semester. In the earlier years the sequencing and delivery of the course content was broadly similar, and so I feel the comparison is a reasonable one.

The feed through into the second year of the C# has been successful. The C# platform allows students to move into C++ (as do our games programmers) and Java with few problems. We make the point very strongly throughout the course that our chosen language is simply being used as a vehicle to teach programming concepts and good practice and they seem to respond to this.

We made the move to Java some time ago on the basis of our assessment of the future usefulness of the language to graduates and the way that it fitted with our teaching needs. Our move to from Java to C# was similarly considered, and has resulted in a better experience for our students.
© Rob Miles 03/01/06
www.robmiles.com
� ECMA – 334 C# Language Specification

[http://www.ecma-international.org/publications/standards/Ecma-334.htm]

ECMA – 335 Common Language Infrastructure

[http://www.ecma-international.org/publications/standards/Ecma-335.htm]

� SSCLI Download Page

[msdn.microsoft.com/net/sscli/]

� Mono Project Homepage

[http://www.mono-project.com/about/index.html]

� Java Gently

[http://javagently.cs.up.ac.za/]

PAGE
5

